Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
An Acad Bras Cienc ; 94(suppl 1): e20210621, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35508019

RESUMO

Antarctic active volcanoes can disperse pyroclastic minerals at long distances, transporting nutrients and microorganisms to the surrounding glacial environment. The sedimented volcanic materials - called tephras - may interact with glacier ice and produce a unique environment for microbial life. This study aimed to describe the microbial community structure of an Antarctic glacier ice with tephra layers in terms of its taxonomic and functional diversity. Ice samples from Collins Glacier (King George Island) containing tephra layers of Deception Island volcano were analyzed by a whole shotgun metagenomic approach. Taxonomic analysis revealed a highly diverse community dominated by phyla Bacteroidetes, Cyanobacteria and Proteobacteria. The dominant genera were Chitinophaga (13%), Acidobacterium (8%), and Cyanothece (4%), being all of these known to include psychrotolerant and psychrophilic strains. Functional diversity analysis revealed almost complete carbon, nitrogen and sulfur biogeochemical cycles. Carbohydrate metabolism of the ice-tephra community uses both organic and inorganic carbon inputs, where photosynthesis plays an important role through CO2 fixation. Our results also demonstrate a biotechnological potential for this glacial community, with functional annotations for styrene degradation and carotenoid pigment genes. Future metatranscriptomic studies shall further reveal the active strategies and the biotechnology potential of extremophiles from this unique ice-tephra microbial community.


Assuntos
Cianobactérias , Microbiota , Regiões Antárticas , Carbono , Microbiota/genética , RNA Ribossômico 16S/genética
2.
Am J Physiol Gastrointest Liver Physiol ; 317(3): G342-G348, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31314548

RESUMO

There is a body of evidence that supports the notion that gut dysbiosis plays a role in the pathogenesis of cardiovascular diseases. Decreased cardiac function can reduce intestinal perfusion, resulting in morphological alterations, which may contribute to changes in the gut microbiota composition in patients with heart failure (HF). In this regard, a germane question is whether changes in gut microbiota composition are a cause or consequence of the cardiovascular disturbance. We tested the hypothesis that the development of HF, after myocardial infarction, would cause gut dysbiosis. Fecal samples were collected before and 6 wk after myocardial infarction or sham surgery. Gut microbiota were characterized by sequencing the bacterial 16S ribosomal DNA. The composition of bacterial communities in the fecal samples was evaluated by calculating three major ecological parameters: 1) the Chao 1 richness, 2) the Pielou evenness, and 3) the Shannon index. None of these indices was changed in either sham or HF rats. The Firmicutes/Bacteroidetes ratio was not altered in HF rats. The number of species in each phylum was also not different between sham and HF rats. ß-Diversity analysis showed that the composition of gut microbiota was not changed with the development of HF. Bacterial genera were grouped according to their major metabolic end-products (acetate, butyrate, and lactate), but no differences were observed in HF rats. Therefore, we conclude that HF induced by myocardial infarction does not affect gut microbiota composition, at least in rats, indicating that the dysbiosis observed in patients with HF may precede cardiovascular disturbance.NEW & NOTEWORTHY Our study demonstrated that, following myocardial infarction in rats, heart failure (HF) development did not affect the intestinal microbiota despite distinct differences reported in the gut microbiota of humans with HF. Our finding is consistent with the notion that dysbiosis observed in patients with HF may precede cardiovascular dysfunction and therefore offers potential for early diagnosis and treatment.


Assuntos
Disbiose/microbiologia , Fezes/microbiologia , Insuficiência Cardíaca/fisiopatologia , Intestinos/microbiologia , Infarto do Miocárdio/microbiologia , Animais , Microbioma Gastrointestinal/genética , Insuficiência Cardíaca/complicações , Intestinos/patologia , Masculino , Microbiota/efeitos dos fármacos , Ratos Wistar
3.
Extremophiles ; 22(6): 917-929, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30109444

RESUMO

Polar volcanoes harbor unique conditions of extreme temperature gradients capable of selecting different types of extremophiles. Deception Island is a marine stratovolcano located at Maritime Antarctica that is notable for its pronounced temperature gradients over very short distances, reaching values up to 100 °C in the fumaroles, and subzero temperatures next to the glaciers. Due to these characteristics, Deception can be considered an interesting analogue of extraterrestrial environments. Our main goal in this study was to isolate thermophilic and psychrophilic bacteria from sediments associated with fumaroles and glaciers from two geothermal sites in Deception Island, comprising temperatures between 0 and 98 °C, and to evaluate their survivability to desiccation and UV-C radiation. Our results revealed that culturable thermophiles and psychrophiles were recovered among the extreme temperature gradient in Deception volcano, which indicates that these extremophiles remain alive even when the conditions do not comprise their growth range. The viability of culturable psychrophiles in hyperthermophilic environments is still poorly understood and our work showed the importance of future studies about their survival strategies in high temperatures. Finally, the spore-forming thermophilic isolates which we found have displayed good survival to desiccation and UV-C irradiation, which suggests their potential to be further explored in astrobiological studies.


Assuntos
Camada de Gelo/microbiologia , Microbiota , Termotolerância , Erupções Vulcânicas , Regiões Antárticas , Bactérias/genética , Bactérias/isolamento & purificação , Ambientes Extremos , Ilhas
4.
Front Microbiol ; 9: 899, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867810

RESUMO

Active volcanoes in Antarctica contrast with their predominantly cold surroundings, resulting in environmental conditions capable of selecting for versatile and extremely diverse microbial communities. This is especially true on Deception Island, where geothermal, marine, and polar environments combine to create an extraordinary range of environmental conditions. Our main goal in this study was to understand how microbial community structure is shaped by gradients of temperature, salinity, and geochemistry in polar marine volcanoes. Thereby, we collected surface sediment samples associated with fumaroles and glaciers at two sites on Deception, with temperatures ranging from 0 to 98°C. Sequencing of the 16S rRNA gene was performed to assess the composition and diversity of Bacteria and Archaea. Our results revealed that Deception harbors a combination of taxonomic groups commonly found both in cold and geothermal environments of continental Antarctica, and also groups normally identified at deep and shallow-sea hydrothermal vents, such as hyperthermophilic archaea. We observed a clear separation in microbial community structure across environmental gradients, suggesting that microbial community structure is strongly niche driven on Deception. Bacterial community structure was significantly associated with temperature, pH, salinity, and chemical composition; in contrast, archaeal community structure was strongly associated only with temperature. Our work suggests that Deception represents a peculiar "open-air" laboratory to elucidate central questions regarding molecular adaptability, microbial evolution, and biogeography of extremophiles in polar regions.

5.
J. pediatr. (Rio J.) ; 94(3): 258-267, May-June 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-954614

RESUMO

Abstract Objective Since the present group had already described the composition of the intestinal microbiota of Brazilian infants under low social economic level, the aim of the present study was to analyze the microbial community structure changes in this group of infants during their early life due to external factors. Methods Fecal samples were collected from 11 infants monthly during the first year of life. The infants were followed regarding clinical and diet information and characterized according to breastfeeding practices. DNA was extracted from fecal samples of each child and subjected to Polymerase Chain Reaction - Denaturing Gradient Gel Electrophoresis. Results The results revealed a pattern of similarity between the time points for those who were on exclusive breastfeeding or predominant breastfeeding. Although there were changes in intensity and fluctuation of some bands, the Denaturing Gradient Gel Electrophoresis patterns in the one-year microbial analysis were stable for breastfeeding children. There was uninterrupted ecological succession despite the influence of external factors, such as complementary feeding and antibiotic administration, suggesting microbiota resilience. This was not observed for those children who had mixed feeding and introduction of solid food before the 5th month of life. Conclusion These results suggested an intestinal microbiota pattern resilient to external forces, due to the probiotic and prebiotic effects of exclusive breastfeeding, reinforcing the importance of exclusive breastfeeding until the 6th month of life.


Resumo Objetivo Como nosso grupo já havia descrito a composição da microbiota intestinal de neonatos brasileiros em baixo nível socioeconômico, o objetivo deste estudo foi analisar alterações estruturais da comunidade microbiana desse grupo de neonatos no início de sua vida devido a fatores externos. Métodos Amostras fecais foram coletadas mensalmente de 11 neonatos durante o primeiro ano de vida. Os neonatos foram acompanhados com relação a informações clínicas e nutricionais e caracterizados de acordo com práticas de amamentação. O DNA foi extraído das amostras fecais de cada criança e submetido a análise através da técnica de Reação em Cadeia da Polimerase - Eletroforese em Gel de Gradiente Desnaturante. Resultados Os resultados revelaram um padrão de similaridade entre seus próprios pontos temporais em indivíduos em aleitamento materno exclusivo ou predominante. Apesar de variações na intensidade e flutuação de algumas bandas, o padrão Eletroforese em Gel de Gradiente Desnaturante na análise microbiana de um ano foi estável em crianças em aleitamento materno. Houve sucessão ecológica ininterrupta apesar da influência de fatores externos, como alimentação complementar e administração de antibióticos, sugeriu resiliência da microbiota. Isso não foi observado nas crianças com alimentação heterogênea e introdução de alimentos sólidos antes do quinto mês de vida. Conclusão Nossos resultados sugerem um padrão de microbiota intestinal resiliente a forças externas, devido a efeitos probióticos e prebióticos do aleitamento materno exclusivo, reforçam a importância do aleitamento materno exclusivo até o sexto mês de vida.


Assuntos
Humanos , Masculino , Feminino , Recém-Nascido , Lactente , Bactérias/imunologia , Aleitamento Materno , Fezes/microbiologia , Intestinos/microbiologia , Antibacterianos/administração & dosagem , Bactérias/efeitos dos fármacos , Bactérias/genética , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Reação em Cadeia da Polimerase , Eletroforese em Gel de Ágar
6.
J Pediatr (Rio J) ; 94(3): 258-267, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28886400

RESUMO

OBJECTIVE: Since the present group had already described the composition of the intestinal microbiota of Brazilian infants under low social economic level, the aim of the present study was to analyze the microbial community structure changes in this group of infants during their early life due to external factors. METHODS: Fecal samples were collected from 11 infants monthly during the first year of life. The infants were followed regarding clinical and diet information and characterized according to breastfeeding practices. DNA was extracted from fecal samples of each child and subjected to Polymerase Chain Reaction - Denaturing Gradient Gel Electrophoresis. RESULTS: The results revealed a pattern of similarity between the time points for those who were on exclusive breastfeeding or predominant breastfeeding. Although there were changes in intensity and fluctuation of some bands, the Denaturing Gradient Gel Electrophoresis patterns in the one-year microbial analysis were stable for breastfeeding children. There was uninterrupted ecological succession despite the influence of external factors, such as complementary feeding and antibiotic administration, suggesting microbiota resilience. This was not observed for those children who had mixed feeding and introduction of solid food before the 5th month of life. CONCLUSION: These results suggested an intestinal microbiota pattern resilient to external forces, due to the probiotic and prebiotic effects of exclusive breastfeeding, reinforcing the importance of exclusive breastfeeding until the 6th month of life.


Assuntos
Antibacterianos/administração & dosagem , Bactérias/imunologia , Aleitamento Materno , Fezes/microbiologia , Intestinos/microbiologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Eletroforese em Gel de Ágar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Reação em Cadeia da Polimerase , RNA Bacteriano/análise , RNA Ribossômico 16S/análise
7.
Front Microbiol ; 8: 153, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28210255

RESUMO

Microorganisms dominate most Antarctic marine ecosystems, in terms of biomass and taxonomic diversity, and play crucial role in ecosystem functioning due to their high metabolic plasticity. Admiralty Bay is the largest bay on King George Island (South Shetland Islands, Antarctic Peninsula) and a combination of hydro-oceanographic characteristics (bathymetry, sea ice and glacier melting, seasonal entrance of water masses, turbidity, vertical fluxes) create conditions favoring organic carbon deposition on the seafloor and microbial activities. We sampled surface sediments from 15 sites across Admiralty Bay (100-502 m total depth) and the adjacent North Bransfield Basin (693-1147 m), and used the amplicon 454-sequencing of 16S rRNA gene tags to compare the bacterial composition, diversity, and microbial community structure across environmental parameters (sediment grain size, pigments and organic nutrients) between the two areas. Marine sediments had a high abundance of heterotrophic Gammaproteobacteria (92.4% and 83.8% inside and outside the bay, respectively), followed by Alphaproteobacteria (2.5 and 5.5%), Firmicutes (1.5 and 1.6%), Bacteroidetes (1.1 and 1.7%), Deltaproteobacteria (0.8 and 2.5%) and Actinobacteria (0.7 and 1.3%). Differences in alpha-diversity and bacterial community structure were found between the two areas, reflecting the physical and chemical differences in the sediments, and the organic matter input.

8.
Microbiologyopen ; 4(4): 574-88, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26147800

RESUMO

The Sairecabur volcano (5971 m), in the Atacama Desert, is a high-altitude extreme environment with high daily temperature variations, acidic soils, intense UV radiation, and low availability of water. Four different species of yeasts were isolated from this region using oligotrophic media, identified and characterized for their tolerance to extreme conditions. rRNA sequencing revealed high identity (>98%) to Cryptococcus friedmannii, Exophiala sp., Holtermanniella watticus, and Rhodosporidium toruloides. To our knowledge, this is the first report of these yeasts in the Atacama Desert. All isolates showed high resistance to UV-C, UV-B and environmental-UV radiation, capacity to grow at moderate saline media (0.75-2.25 mol/L NaCl) and at moderate to cold temperatures, being C. friedmannii and H. watticus able to grow in temperatures down to -6.5°C. The presence of pigments, analyzed by Raman spectroscopy, correlated with UV resistance in some cases, but there is evidence that, on the natural environment, other molecular mechanisms may be as important as pigmentation, which has implications for the search of spectroscopic biosignatures on planetary surfaces. Due to the extreme tolerances of the isolated yeasts, these organisms represent interesting eukaryotic models for astrobiological purposes.


Assuntos
Viabilidade Microbiana/efeitos da radiação , Raios Ultravioleta , Leveduras/isolamento & purificação , Leveduras/efeitos da radiação , Altitude , Chile , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Clima Desértico , Dados de Sequência Molecular , Pigmentos Biológicos/análise , Análise de Sequência de DNA , Cloreto de Sódio/metabolismo , Temperatura , Leveduras/classificação , Leveduras/fisiologia
9.
Microb Ecol ; 67(3): 624-34, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24658546

RESUMO

The sequence of bacterial events that occurs during the colonization of the gastrointestinal tract may affect the future health of the host. A clear understanding of the colonization process of the human neonatal gut in developing countries is lacking because the few available studies were mostly performed using culture techniques. Using molecular approaches, this study analyzed the fecal microbiota of children of low socioeconomic status in São Paulo, Brazil, during their first year of life. We collected fecal samples of healthy children at 3, 6, and 12 months of life. Total DNA was extracted directly from feces, and the bacteria-specific primers 27F-1492R were used to construct 16S rRNA libraries. Clones were randomly selected and partially sequenced. The main phylogenetic groups identified at 3 months were Streptococcus, unidentified bacteria, and Escherichia. At 6 months, Escherichia remained predominant, while the unidentified bacterial population increased significantly. At 12 months, a more complex composition of fecal microbiota was observed, represented by unidentified bacteria and microorganisms found at low rates at earlier ages. The genus Escherichia remained the most abundant microorganism (34% relative abundance and 75% prevalence). Principal component analysis (PCA) revealed changes in the composition of the microbiota at 6 months and an increase of diversity at 12 months of life. Bifidobacterium was identified by quantitative PCR (qPCR) and showed a high incidence in the microbiota at 3 months. The present results corroborate the global observation of inter-individual variability with an early establishment of microbial complexity at the end of the first year of life and highlight the presence of the Escherichia as abundant in microbiota composition of this group of children.


Assuntos
Escherichia coli/fisiologia , Fezes/microbiologia , Bifidobacterium/genética , Bifidobacterium/isolamento & purificação , Brasil , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Feminino , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
11.
Clinics (Sao Paulo) ; 67(2): 113-23, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22358235

RESUMO

OBJECTIVE: The establishment of the intestinal microbiota in newborns is a critical period with possible long-term consequences for human health. In this research, the development of the fecal microbiota of a group of exclusively breastfed neonates living in low socio-economic conditions in the city of São Paulo, Brazil, during the first month of life, was studied. METHODS: Fecal samples were collected from ten neonates on the second, seventh, and 30(th) days after birth. One of the neonates underwent antibiotic therapy. Molecular techniques were used for analysis; DNA was extracted from the samples, and 16S rRNA libraries were sequenced and phylogenetically analyzed after construction. A real-time polymerase chain reaction (PCR) was performed on the samples taken from the 30(th) day to amplify DNA from Bifidobacterium sp. RESULTS: The primary phylogenetic groups identified in the samples were Escherichia and Clostridium. Staphylococcus was identified at a low rate. Bifidobacterium sp. was detected in all of the samples collected on the 30(th) day. In the child who received antibiotics, a reduction in anaerobes and Escherichia, which was associated with an overgrowth of Klebsiella, was observed throughout the experimental period. CONCLUSION: The observed pattern of Escherichia predominance and reduced Staphylococcus colonization is in contrast with the patterns observed in neonates living in developed countries.


Assuntos
Bactérias/isolamento & purificação , Aleitamento Materno , DNA Bacteriano/genética , Fezes/microbiologia , Intestinos/microbiologia , RNA Ribossômico 16S/genética , Bactérias/classificação , Bactérias/genética , Bifidobacterium/genética , Bifidobacterium/isolamento & purificação , Brasil , Clostridium/genética , Clostridium/isolamento & purificação , Contagem de Colônia Microbiana , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Feminino , Humanos , Recém-Nascido , Masculino , Pobreza , Análise de Sequência de DNA , Staphylococcus/genética , Staphylococcus/isolamento & purificação
12.
Clinics ; 67(2): 113-123, 2012. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-614634

RESUMO

OBJECTIVE: The establishment of the intestinal microbiota in newborns is a critical period with possible long-term consequences for human health. In this research, the development of the fecal microbiota of a group of exclusively breastfed neonates living in low socio-economic conditions in the city of São Paulo, Brazil, during the first month of life, was studied. METHODS: Fecal samples were collected from ten neonates on the second, seventh, and 30th days after birth. One of the neonates underwent antibiotic therapy. Molecular techniques were used for analysis; DNA was extracted from the samples, and 16S rRNA libraries were sequenced and phylogenetically analyzed after construction. A real-time polymerase chain reaction (PCR) was performed on the samples taken from the 30th day to amplify DNA from Bifidobacterium sp. RESULTS: The primary phylogenetic groups identified in the samples were Escherichia and Clostridium. Staphylococcus was identified at a low rate. Bifidobacterium sp. was detected in all of the samples collected on the 30th day. In the child who received antibiotics, a reduction in anaerobes and Escherichia, which was associated with an overgrowth of Klebsiella, was observed throughout the experimental period. CONCLUSION: The observed pattern of Escherichia predominance and reduced Staphylococcus colonization is in contrast with the patterns observed in neonates living in developed countries.


Assuntos
Feminino , Humanos , Recém-Nascido , Masculino , Aleitamento Materno , Bactérias/isolamento & purificação , DNA Bacteriano/genética , Fezes/microbiologia , Intestinos/microbiologia , /genética , Brasil , Bactérias/classificação , Bactérias/genética , Bifidobacterium/genética , Bifidobacterium/isolamento & purificação , Contagem de Colônia Microbiana , Clostridium/genética , Clostridium/isolamento & purificação , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Pobreza , Análise de Sequência de DNA , Staphylococcus/genética , Staphylococcus/isolamento & purificação
13.
Curr Microbiol ; 52(6): 469-72, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16619113

RESUMO

Aspergillus carbonarius is a potent ochratoxin A producer that has been found in products such as grapes, coffee, spices, and cocoa. Ochratoxin A has nephrotoxic effect, and it has been classified as a possible carcinogenic substance for humans. Here we describe for the first time a transformation system for A. carbonarius, providing an important step towards its genetic manipulation. Conidia were transformed to acquire hygromycin B resistance using the AGL-1 strain of Agrobacterium tumefaciens. Genetic transformation was evaluated growing A. tumefaciens cells in induction medium containing or not acetosyringone prior to co-cultivation. The mean transforming efficiencies in IM+AS and IM-AS conditions were 62.2 and 44.5 transformants per 10(5) conidia, respectively. The hph gene was random integrated into the genome of A. carbonarius. Fungal sequences flanking the insertion site could be amplified by TAIL-PCR.


Assuntos
Agrobacterium tumefaciens/genética , Aspergillus/genética , Ocratoxinas/metabolismo , Transformação Genética , Aspergillus/metabolismo , Técnicas de Cocultura/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...